逻辑代数的基本公式是怎样来的?有点像数学的

口才训练 2023-01-24 04:39 编辑:admin 287阅读

一、逻辑代数的基本公式是怎样来的?有点像数学的概率,很多又不同,该怎样理解?

它们的相同点很好解释:

概率论是基于集合论建立的。事件――概率论中的基础概念,本身就是集合――样本空间的子集。逻辑代数,就是形式逻辑的数学表达。而逻辑学,显然是可以应用于任何领域的――集合论本身,就是在严格的逻辑基础上建立的。通过简单的定义,就可以建立集合(概率)与逻辑代数间的关系。

定义集合(事件):A、B;

定义命题(逻辑变量):

a:某元素x属于集合A;

b:某元素x属于集合B;

它们的运算的对应关系如下:

a或b,即:a+b;表示:x∈A或x∈B,即:x∈A∪B;

a且b,即:a・b;表示:x∈A且x∈B,即:x∈A∩B;

非a,即::a′;表示:x∉A,即:x∈~A;(A的补集,或A的相反事件)

基本运算能建立对等的关系,那么运算定律必然也有对等关系。举例说明:

【a+ab = a】↔【A∪A∩B = A】;

如果你学过高等数学中的代数系统就能明白,布尔代数、集合论、概率论,它们是具有同构关系的代数系统。

至于不同点,就更好理解了:

相同点、相似性,都是在抽象到一定高度时才能表现出来的。在代数系统的层面上,布尔代数和集合运算十分相似,唯一的区别就是参与运算的对象的含义不同(当然,运算本身的含义也不同)。

但是,第一,上面已经说了,两种领域所研究的对象不同,侧重点也不同。第二、代数系统或数学模型毕竟只能反映事物一方面的性质。不同领域的对象还有很多特有的性质,那些性质需要新的方法来研究。

比如,逻辑代数除了研究基本的逻辑运算外,还定义了很多特有的运算:异或、同或等。这些复杂的逻辑运算,在集合中也能表示,但意义不大,所以不做研究。再比如概率论中的条件概率,用逻辑代数就不好表示了。

二、关于间歇式外斜的复发外斜

根据统计结果,间歇性外斜术后大约有三分之一的复发率。所以如果有近视或散光等,斜视手术后一定要相对足矫配镜并坚持戴镜。如果水平三棱镜度大于20,可以考虑再次手术。但如果外观上或视疲劳症状都不是很明显,成年人的间歇性外斜矫正术确实应该以相对欠矫为原则,一旦过矫,复视会很难克服。

(沈勤大夫郑重提醒:因不能面诊患者,无法全面了解病情,以上建议仅供参考,具体诊疗请一定到医院在医生指导下进行!)

上海第九人民医院沈勤

三、高中数学集合的基本关系问题。

即A为B的子集,从数轴来看,即a+1>=-1/2,2a-1<=2,所以a的范围是[-3/2,3/2]

注:A为空集时,也符合题意,所以无需保证a+1<2a-1

四、集合基本关系问题,紧急!!!

不一样

一个集合的子集可以包括集合自身,而真子集不可以