很多人说数学这门学科很枯燥无趣,认为那些搞数学的都有一个固执木讷的脑袋。造成这样看似不太公平的印象还是有点依据的,在晓然菌看来,一个很重要的原因就是数学家太爱较真了,可谓是到了锱铢必较的地步。就像数学里有些理论,明明都已经找到了无数验证正确的数学现象,只是一时半会没有找到理论证明,数学家就是不给这样的数学猜想转正,就是只能被称作猜想。
数学博大精深
这里有许多看似简单的理论,证明却是很难。
哥德巴赫猜想这个猜想是看起来最简单不过了,“任何一个大于4的偶数都可以写成两个奇素数之和。”不出意外的话,你用超级计算机算到世界毁灭都不会遇到一个极其特殊的偶数,你只能写成一个奇合数和一个奇素数之和,或者是只能写成两个奇合数之和,就是不能写成两个奇素数之和,这看起来就是对的啊。
哥德巴赫
对于一个数学猜想解决它的根本道路是从理论上经过逻辑推理,通过推导得到最后成立与否的证明,凡是经历过这样的过程,才能把猜想转正成定理。历史上,在哥德巴赫猜想提出的几百年里,数学家们一直都没放弃过理论上来解决它,尤其在20世纪前半叶,关于哥德巴赫猜想的突破几乎是隔几年来一次。在这里中国解析数论学派取得了重大成就。王元,潘承洞,潘承彪,华罗庚,陈景润都有相当大贡献。
陈景润
目前哥德巴赫猜想最好结果仍然是陈景润在1973年给出的,陈景润的最好结果是:一个充分大的偶数都可以写成一个奇素数和不超过2个奇素数乘积的和,也就是“1+2”。但是猜想的终极目标却是“1+1”啊。如今将近50年过去了,仍然没有进展。人们都认为要有开天辟地的新方法才能解决这个难题了,交给下一个时代的数学家们吧。
哥德巴赫猜想看起来很简单吧,但就是解不开。
3X+1问题给你一个任意的整数,如果是偶数就除2,如果是奇数就乘3加1,然后如此迭代下去,最终一定会收敛到1。
第一次看到这个问题的同学一定会狐疑,真的吗?我不信。不信,那你就试着算几个呗,好像是真的哎,手算的太小,我用计算机来模拟。如果你的计算机算力足够大,一直计算到100*2^50次方,你会惊奇地发现,这个好像真的是对的,没有一个例外。
考拉兹猜想表述很简单
这个猜想提出的时间不算太久,1937年才开始出现,德国数学家考拉兹发现的发现的。一经推出,立刻风靡世界,50年代的某段时间里,整个耶鲁大学几乎每个人都在研究这个问题。然而,大部分的研究仅限于验算。
3X+1问题计算过程极为动荡
这个小游戏看起来太简单了,理论上应该很好证吧,不好意思,70年来,无人能破,甚至找不到一个真正意义上的突破。前段时间,陶哲轩宣布了在这个问题的一小部分,就让很多人心里激动了好久。
陶哲轩
然而,这个世界上最坦荡的就是数学题了,不会就是不会,解不开就是解不开,任何伪装都是徒劳的。
数学家 考拉兹
当然了,数学里有太多这种看似简单实则巨难的问题,只不过以我们普通人的水平都被这最浅显的陈述所蒙蔽了。陈景润曾经说过:“一些想要在哥德巴赫问题研究上有所突破的同志们,必须至少要有数学研究生以上的水平,并且要持续至少要在数论领域深耕数年才有可能有所发现,不具备上述能力的同志们是不可能做出真正的成果的。”
在陈先生的这段话里我们也认识到,数学可以很简单,也可以很困难,唯一要保持的就是对于数学探索的信心以及敬畏之心。
欧几里德几何中的第五公设(公理),过直线外一点有且只有一条直线与它平行。在直觉上是完全正确的,但实事并非如此。